Get help from the best in academic writing.

Role of Institutions in Architecture and Quantity Surveying

Introduction In the construction industry used to follow the professional body’s instruction and maintain the ethics and code of conduct to evaluate the function of the industry. So that client always expect the advice from the professionals and imitate the professionalism to gain the high quality end product, today world is globalizing very fast. Because of that it is directly effect to the construction industry. In today construction industry is facing global changes and therefore they demanding. Changing skills from various construction related professions. Professionals in construction industry are forced to maintain their responsibilities and meet the demand procedures with quality.
A Professional Institution also called professional body is an assembly of people in an educated profession who are entrusted with maintaining organize or oversight of the lawful practice of the work. In this report I investigate a professional institute which serves the built environment sector. And also I briefly explain of the professional institution. Professional institutions are helping to various categories of constructional personal to upgrade their skills and overall impact of such professional institution in the construction industry. Membership of a professional institution, as a legal requirement, can in some professions from the primary formal basis for gaining entry to and setting up practices within the profession.
Role of the professional Institution Eliot Freidson presents the argument that while all occupations contain some blend of skills, knowledge, qualification and competence, professions involve a “special kind of knowledge … believed to require the exercise of discretionary judgment and a grounding in abstract theory and concepts” what Michael Young would refer to as powerful knowledge. (Daniels 2007) Professional institution plays a major role of construction industry. And also it maintains the standards of the professions in the construction industry.
Professional institution maintains world class knowledge base because people in same profession meet each other in one place to create a network of communication to broaden the knowledge to enhance the professional relationship and respond to changing environment to meet current and future operating need. Therefore many professional institutions are involved to in the developing and monitoring of professional educational program and the upgrading of skills. Professional institution can improve service to members and upgrading services to industry.
Membership of a professional institution, as a legal required, can in some professions from the primary basis entry to and setting up practices with the profession. People who are eligible for the professional development plan if they have satisfied their academic requirement of the professional institution which they are planning to membership. There are many advantages of being a member in professional institution
They are
Networking Opportunities
Attending to conference and seminars
Get the privilege to use online recourse
Free education
Above all the fact explains about how to improve the service member in professional institution. Professional institutions are encouraging sustainable construction. Because the world is globalizing very fast and it’s directly effect to the construction industry and also it publication the magazine, books and other publications to improve the knowledge of members. Because members are the heart of that professional institution. Also maintain and improve the quality of the built environment.
Professional Institutions are helping to various categories of Constructional Personal There are many professional institutions related to the construction
Royal Institute of charted surveyors
Charted Institute of Builders
Association of Project Managers
British Institute of Facility Managers
Charted Institute of Architectural Technologist
Each and every professional institution is helping to several of contractual personal to upgrade their skills with membership and certification. PDP is the next stage in gaining professional qualifications and force on recording management experiences and achievement.
Every member to comply with consist of RICS practice statement in the interest of the maintaining the highest professional institution.
Every construction has different membership benefit for example.
RIBA (Royal Institute of British Architecture)
Roles and Responsibilities
Maintain world- class knowledge base
Re-position architecture as providers of both sound and imaginative solutions
An RIBA Client Adviser who is a qualified architect is not the main architect in such projects but acts as an independent adviser. They:
provide strategic advice
help clients to achieve their objectives
meet clients expectations on performance and design quality (RIBA)
Maximize contribution of members and staff
Work to improve the design quality of public buildings, homes/ communications. (Royal Institute of Brtish Architects )
SLIA (Sri Lanka Institute of Architect)
It has unique benefit for each membership. They have 7 type of membership
Honorary Fellow Members
Fellow Members
Associate Members
Honorary Members
Registered Members
Graduate Members
Student Members
(Sri Lanka Institute of Architect)
PMI (Project Management Institute)
As a PMI member, you gain exclusive access to PMI publications and our global standards, networking options with our chapters and online communities of practice, and leadership and volunteer opportunities. You can also find discounts on certification exams and innovations, as well as our professional development offerings received. (Project Managment Institute 2014)
AIQS (Australian Institute of Quantity Surveyors)
Role of AIQS
Ensure that practicing Quantity Surveyors are dedicated to maintaining the highest standards of professional excellence
Carrying research about the collection of cost data
Publishing of current construction costs
Maintaining Australian Standard method of measurement
(Role of AIQS)
Benefit of a member
Promote as a Building Economist
Provide Technical articles
Practices noted and policy statements
Promoting Members to potential QS clients
Fee free Gold credit card, home loan and life insurance for AIQS members
(Role of AIQS)
AGS (The Association of Geotechnical and Geo environmental Specialists)
The Benefits of AGS Member
Membership of Representative organization
Provides a voice on the Ground Forum, the body that represents the main industry participants in Geo techniques and the Geo environment
Provides the means to lobby Government and the construction clients Forum via the Ground Forum and the construction Industry council
(The Benefits of AGS Member)
If they get the membership benefit it is help the update their skills with membership. So there is various type of method to update their skills with membership. They are conducted the training programs. Introduce some flexible membership fee, Conduct e- learning programs, Arrange some group discussion, Get some task and dividing in group members..etc.
Overall impact of such professional institution Professional Institution has impact in the construction industry many ways. Improve the quality, improve the skills of the members introducing new ways how to study rules and regulation new opportunity to take right path and build good construction site. Therefore Professionals in construction industry are forced to maintain their responsibilities and meet the demand and procedures with quality. So that professional institution helps to improve the quality of the construction site. And also in professional institution is a place where people from the same profession meets each other and then shares their ideas, skills. So professional institution is help to develop skills of the people in the construction site.
Professional institution is helps to gain new skills and knowledge needed to manage staff develop business. In professional institution meet to same professional people and then way share their new technology, new experiment and introduce new ways and also in that ways they selected better things above all the gathering information and detail if they shared. So it is help to take decision to get a right part of the construction site. Memberships of a professional institution, as a legal requirement, so every member know the rules and regulation. It is help to carryon and develops rules and regulation in construction site. Above all the details professional institution is impact to build a good construction site.
Conclusion The finding the research indicates that professional institute has a direct effect on the quality of construction industry. It has so many boundaries. Professional boundaries are important to enhance professionalism within the construction industry.
Such as
Breaches of confidentially
And also professional institute are helping to upgrade their skill with membership and certification. But it is overall impact in the construction industry. So in this report, reporter can highlight those things of professional instruction in the construction industry.
DANIELS, H., Lauder, H., Porter, J. (2007). Young. In: The Routledge Companion to Education. London, Routledge, Faculty of Humanities

Environmental Impact Assessment Programs and Regulations

This chapter will provide a review of the development process of Environmental Impact Assessment Programs (EIAP) for buildings for different countries and different regions of the world as a reflection on the continuing evolution of building environmental assessment tools. This chapter includes two sections: the first section will present the initial structure and types for EIAP and will also compare some programs on their categories and weighting systems to anticipate the directions of future developments for building environmental assessment programs. Understanding how EIAP for buildings developed over the past 20 years is the main outcome of this chapter as it will provide evidence for the research hypothesis and justifications for the methodologies undertaken in this research.
The main aim of this chapter is to review the development process of EIAP for buildings; its categories, weighting systems and methodologies used in developing these programs. It will serve as a starting point in developing an evaluation tool especially designed for the Egyptian environment. To achieve this aim some objectives have been adopted:
Review and compare different types of EIAP for buildings from variety of regions, emphasizing on their categories of assessment, weighting systems and their latest developments.
Investigate the future development direction for EIAP for buildings.
The development of EIAP for buildings
Building sector contribute significantly to energy consumption all over the world. It is responsible for 38% of the world primary energy consumption and the CO2 emission resulting from these huge levels of consumption, as shown in Figure 2-1 (BP Statistical Review of World Energy, 2008, International Energy Agency (IEA) Statistics Division, 2008). A lot of experts believe that the building sector in the world could help reducing 1.8 billion tones of CO2 before Kyoto target in 2012 (World Business Council for Sustainable Development 2009 report). According to the UNEP 2007:
“…significant gains can be made in efforts to combat global warming by reducing energy use and improving energy efficiency in buildings.”
There are number of ways that a building could affect its surrounding environment on its life time. During different stages; row materials, construction, operation and demolition, also, through different components, buildings could have a huge impact on the environment (UNEP 2007). For example: soil pollution, emissions into the air, water spills, waste generation, resource consumption, local impacts, impacts associated with transportation and effects on biodiversity (Gangolells M, et al., 2009). In addition to the previous environmental impacts, buildings affect people’s health directly. As (Theodore 1996— ) reported, there are a lot of health problems that could be linked to buildings directly especially to poor indoor quality i.e. the sick building syndrome.
According to (UNEP 2007) it has long been established that to achieve an energy-efficient world, governments, businesses and individuals must transform the building sector. One of the approaches that have been adopted to address the building sector effects on the environment were developing programs to assess buildings performance. Environmental impact assessment programs (EIAP) for buildings were originally conceived as guidance to recognize best practice, promote green buildings and to provide a unified and coherent base for buildings to be compared on. Recent studies showed that EIAP have been a key factor in improving buildings design as well (pennenvironment pdf). This movement towards sustainable and green buildings has been growing rabidly since the second half of the 80s leading to the development of various methods for evaluating the environmental performance of buildings (Cole, Yudelson and Fedrizzi, 2008). The number of EIAP for buildings has increased significantly in the past two decades, as shown in Figure 2-2. From 4 programs in the 80s to more than 25 program now actively used worldwide. This increase in the number of EIAP for buildings or the revolution as Yudelson describe it, will likely continue over the next few years (Cole, —, Yudelson).
In countries all over the world -especially the developed countries- there is a growing interest in understanding how to reduce the building sector impacts on the environment. This is partially manifested in continues development of EIAP for buildings, either by introducing new assessment tools, or by developing and refining the existing ones. In recent years, the market for evaluating building performance was increasing, with clients demanding buildings that meet the highest efficiency standards and have minimum effects on the environment (U.S. Green Building Council (USGBC), 2005).
The time line progress for the environmental programs
Environmental buildings or green buildings from the market point of view could potentially save money on energy bills, cut global warming pollution and help to secure future energy. Therefore there are growing demands for building classified as green or environmentally friendly. Another aspect that confirm the current success of EIAP for building is that a lot of conferences have been and still are held for the environmental impacts of buildings and the best way to develop and assess it (Cole, —-, Yudelson). EIAP are now considered a driving force to develop buildings industry.
EIAP were first conceived as a mean to quantify the success of a building in achieving reduced impacts on the environment during its life time. They were also developed to comply with standards from organizations like ANSI, ISO, ASHARE, ASTM and CEN. The structure and components of EIAP are always changing to cope with the latest editions in building standards. These changes include; categories of assessment, credits weighting, impacts calculation, cost efficiency and simulation techniques. EIAP assess buildings either on performance bases on prescriptive bases. They were initially developed as voluntary (cole,—) but with the higher demands from the market some programs are mandatory in some parts of the world now for example—-. Some organizations and local authorities now demand a certain qualification to be attained by the building in order to be authorized. For example —
EIAP were first designed to assess certain aspects of buildings mostly energy, water and material use. They were also firstly designed for certain types of buildings. New developments to EIAP for buildings included expanding the assessment categories to include every stage and component of a building during its life time. The new generations of programs are moving towards a more comprehensive view of assessment rather than it being for only one type of buildings or one aspect of building elements. New additions to BREAM 2008 and LEED 2009 included the introduction of new versions to assess new types of building (ref for Leed and bream websites). EIAP also assess buildings in different stages; designing, construction, operation and demolish. With number of these programs being in use for several years spotting the developments directions for EIAP for buildings could be recognized and analyzed.
In the first generation of EIAP like — and —, assessments were usually made by a qualified third party. In recent years web based assessment have been introduced, for example in —- and LEED V3 2009 (ref for Leed and bream websites). This came as a reaction to the market demand for an easy to use initial assessment. EIAP outcomes are a certificate grade (–,–), a report (—) or a —– to acknowledge the grade of a building in achieving its environmental targets. Recent additions to EIAP for building included the introduction of an outstanding rate for outstanding innovations in green building as in — in LEED and —-in BREAM (ref for Leed and bream websites). This comes as a result of the current need on the market for green buildings to achieve the highest— the huge competition.
The success of EIAP in reshaping the building industry is undeniable. In recent years, EIAP have been playing a big role in moving the building industry into a more environment conscious directions, as presented in (Cole, 2003):
“…..There is little doubt that building environmental assessment methods have contributed enormously to furthering the promotion of higher environmental expectations, and are directly and indirectly influencing the performance of buildings….”
This current success of EIAP for buildings is considered one of the —-in the world (usgreen building council). This success derives from the ability of these programs to offers a common ground for designers, governments and buildings owners, to assess building performance and be recognized for good practice.
This chapter will focus on certification programs that deal with evaluation and assessment of buildings to serve as a starting point in developing a specific program aimed at the Egyptian environment needs. From the author view
Types of Building Assessment Methods
EIAP for buildings could be divided to two types according to what they assess in a building. The first type assesses one or more of the building aspects to find out how it will affect the environment and how well the building’s elements will score against environmental standards, for example on energy efficiency or materials choice. Programs like R-2000 and ENERGY STAR assess mainly building energy efficiency (R-2000, 2007, ENERGY STAR, 2009). These types of assessment methods sometimes are specifically designed for a certain type of buildings like P-mark for prefabricated houses and GreenCalc for Dutch office buildings (Technical Research Institute of Sweden, 2009, GreenCalc, 2009). Also for some programs the assessment is done to only one stage of a building, for example ATHENA for design stage only and NovoClimat for after operation stage only (ATHENA, 2009, Natural Resources Canada, 2009). The assessed buildings either pass the assessment and given a certificate or a qualification grade, or fail to qualify and be given guidance on how to improve the assessed element of their building.
The second type of EIAP assesses building as a whole against a set of categories to find out the building total impacts on the environment. These types of programs always include a wide range of categories of assessment ranging from site design and energy efficiency to water usage and recycling management. They also cover different building types with specific consideration for each type, for example in BREEAM, LEEDS and HK-BEAM there are specific versions to assess homes, schools, retail and healthcare. These programs assess a building on different stages; design, construction, operation, maintenance and demolition stage in some programs. Usually a certificate or a qualification grade is awarded to the assessed building to define its standard. Table 2-1 presents EIAP that will be reviewed in this study.
Developed in Canada in 1982 the R-2000 is a voluntary program encouraging builders to build energy-efficient houses that are environmentally friendly and healthy. It includes an energy efficiency standard for new houses that is continuously updated. It also includes comprehensive training and education courses for builders. The R-2000 standard assesses energy consumption performance for a house through a series of technical requirements: (minimum envelope requirements, ventilation system requirements, combustion system requirements, energy performance target, lights and appliances, indoor air quality and environmental features/eco-management) (Natural resources Canada, 2009, R-2000, 2007). During the first few years of application the R-2000 program didn’t attract the anticipated Canadian building practice (Horvat et al., 2005, Adair, 1996), this was due to:
Copying R-2000 homes by uncertified builders that lead to a failure of real application of the program standards.
Being more expensive (6-10%) to build R-2000 home in comparison to regular building.
Being flexible is what helped the R-2000 (2005 edition) program stay in the current market and being able to be applied to any type of homes. Another advantage is producing homes with 30%-40% energy savings (R-2000, 2007, Horvat et al., 2005).
P-mark system (Sweden, 1989)
P-mark came as a reaction to the manufacturers of prefabricated houses in Sweden need for an assessment program that assures the market of the quality of their houses. P-mark is a voluntary program. It was developed for design and after construction stages. P-mark authorities use the method of unannounced inspections to assure quality control procedures after operation. 5% of the finished houses is inspected and measured annually. The inspections are on performance bases for the finished homes on air-tightness of the building envelope, air exchange rates, air-tightness of ducts, sound pressure levels and heat requirement, to verify compliance with P-mark requirements P-mark certificate is considered a form of quality assurance in Sweden (Technical Research Institute of Sweden, 2009, Horvat et al., 2005, Swedish Institute for Technical Approval in Construction SITAC, 2007, website)
One advantage to the application P-mark was that it has helped the Sweden market in reducing complaints from people about the failure of prefabricated homes (Anneling, 1998). The upgrades that have been made to the P-mark in recent years involved improving the assessment categories to include: 1) Testing for ventilation, air-tightness of houses and ventilation ducts, 2) Inspection for HVAC performance, water-tightness of the kitchen or toilet (Technical Research Institute of Sweden, 2009).
The Building Environmental Performance Assessment Criteria (BEPAC) is a voluntary EIAP specifically for commercial buildings. It assesses the building on five categories: energy use, indoor environment, ozone protection, resource conservation, and transportation. BEPAC was Canada’s first non-residential environmental assessment tool and has influenced a lot of the programs that followed for example: BREEAM Canada, GBTool, C-2000 and GreenGlobes. On its first version it used an experienced third party to undertake the assessment. As a reaction to concerns regarding the costs of using an expensive third party to carry out the assessment in BEPAC; the self-assessment version of BEPAC was developed. It allows facility staff to evaluate their own buildings. It contains a program for user training. This new addition has been criticized as the facility staff might be not experienced enough to carry out an assessment. BEBAC label consistency has been questioned and this led to the assessment not being used much in the Canadian market (SDIC, 2009, Marshall, 2008, DEH, 2000, Bond, 1999).
Eco-profile (Norway, 1995)
Eco-Profile is a simple environmental assessment method which was developed to be easy to use to encourage the uptake of the scheme. It assesses life cycle effects of a building on external environment, resources and indoor climate (Boonstra and Pettersen, 2003, Strand and Fossdal, 2003). The program uses 82 parameters to assess the building performance and then given a grade. The grading scale is: 1 for Low environmental impact, 2 for Medium impacts and 3 for Greater impact (Strand and Fossdal, 2003). Eco-Profile is not currently used in the Norwegian market. It has not been marketed since 2002 due to funding limitations with the Norwegian Building Research Institute. Even though more than 60 commercial buildings have been assessed by this program in 2000-2001 it is not considered a successful one as it didn’t continue, as presented in (Boonstra and Pettersen, 2003):
“…so far Eco-profile cannot be said to have been a success…”
Some of the suggested improvement for the program included simplifying the program by presenting one index instead of three and reducing the number of the assessed parameters. Another direction for improvement will have to include updating the weighting of parameters. (Boonstra and Pettersen, 2003, Strand and Fossdal, 2003)
(Andresen, 2005, Krishnan Gowri, 2004., Hasegawa, 2003, G. Assefa et al., 2007).
GreenCalc (The Netherlands, 1997)
GreenCalc is an assessment program for Dutch buildings especially commercial and industrial. It uses computer tool to calculate the building’s environmental load in terms of cost. It is divided into four modules: 1) material module: choice of materials, quantities and insulating values. 2) Energy module: energy consumption in operation phase (use of building, air-conditioning, ventilation and lighting. 3) Water usage: water consumption in the operation phase (facilities, sanitary facilities and rainwater). 4) Mobility: accessibility from home to work place; location, public transport and own transport. Assessment is performed in comparison to a benchmark building designed to 1990’s standards. The benchmark for environmental index for 1990’s building is 100 and current building is 150-300. The program predicts that buildings in 2050 will achieve environmental index of 2000 (Seo et al., 2005, GreenCalc, 2009).
The latest version of the program GreenCalc has tried to cope with the highly developed market of green buildings. It included expanded simulation modeling with the designer being able to evaluate the effects of better insulation, glazing, efficient lighting systems, and solar energy systems as design options. It updated its energy consumption prediction method to be able to calculate the Energy Performance Norm option (GreenCalc, 2009).
ENERGY STAR is a program to improve the energy efficiency of buildings. It is operated by the US Environmental Protection Agency and the US Department of Energy. It assesses products as well as buildings, for example; lighting fixtures, home electronics, office equipment, heating and cooling equipment. The building certificate is for residential (single/multi-family and renovated houses) and commercial buildings (ENERGY STAR, 2009, Horvat et al, 2005). Criticisms to ENERGY STAR buildings came from it being more expensive than other conventional buildings especially on design and material aspects. Studies proved that these costs are accepted because the building save on running costs (i.e., the HVAC system) (Tanmay Tathagat 2007, Horvat et al, 2005).
In recent development to the program and as a reaction to meet the escalating demands for energy savings, modifications have been applied to its minimum energy saving requirements. Initially in 2000 the ENERGY STAR label required a building to be at least 30% more energy efficient (heating, cooling and water heating) than a comparable one built to the 1993 Model Energy Code. Also the building should be 15% more efficient than the state energy code. New modification in 2007 demanded that a building must be at least 15% more energy efficient than homes built to the 2004 International Residential Code IRC (ENERGY STAR, 2009).
(Roosa, 2007, Greg K and Capital E, 2003).
(Yudelson and Fedrizzi, 2008b, Greg K and Capital E, 2003, ENERGY STAR, 2009). NovoClimat (Canada, Québec, 2000)
NovoClimat was initially conceived to allow Quebec builders to increase the energy efficiency of their homes. It was developed by the Quebec Agency for Energy Efficiency (Natural Resources Canada, 2009, Horvat et al., 2005). The assessment is done to the building in construction stage and after completion. A typical Novoclimat home will score EnerGuide rating of between 78 and 80 (, It is a voluntary program inspired by Canada’s National Model Energy Code. What makes this program different is the fact that it connects energy efficiency and air-tightness to the durability of the building envelope. The new Novoclimat 2007 aimed directly to quantify the effects it makes to a building, by setting a goal to improve a building’s energy performance by a minimum of 25% (Efficient Energy Agency, 2008, Natural Resources Canada, 2009).
(Salomon and Nigel, 2006, Robert C, 2003, Natural Resources Canada, 2009, Horvat et al., 2005). ATHENA (Canada, 2000)
Athena is North American software for Life Cycle Assessment (LCA) for buildings. It assesses industrial, institutional, office, multi-unit/single family residential homes and also assesses both new buildings and renovations to existing buildings. It is for design stage only to help in deciding which materials to use as it recognizes more than 90 materials and simulates over 1,200 different assembly combinations (structural and envelope). According to ATHENA institute 2009, this software takes into account the environmental effects of: material manufacturing, (including resource extraction and recycled content), related transportation, on-site construction, regional variation in energy use and other factors, building type and assumed lifespan, maintenance, repair and replacement effects, demolition and disposal, operating energy emissions and pre-combustion effects, embodied primary energy use, global warming potential, solid waste emissions, pollutants to air, pollutants to water and natural resource use. ATHENA (4) Impact Estimator, is the newest version of the program and was released in 2009. As most of the new generation of EIAP, ATHENA (4) newest edition included improving simulation modeling. The software will help designers choose a design from up to five design scenarios. It is also more flexible in handling data flows with more impact measures. Another new feature is the ability to choose new regions to assess (ATHENA, 2009).
Eco-Quantum (The Netherlands, 1998)
Eco-Quantum is a LCA based computer tool. It starts by entering building data, then the calculation section and finally the output results. It has two versions; one for offices and the other for domestic buildings. It calculates the environmental effects during the entire life span of a building. This includes the impact of energy, the maintenance during the use phase and the differences in the durability of parts of the construction related to the life span of the building. The program has an advantage of being easy to use. As a reaction to the evolving market for environmental assessment, Eco-Quantum V3 latest additives included improving assessment categories. Not only it assess materials and energy flow, it now also takes into account the possibility for selective demolition, recycling, ozone depletion, human toxicity and product reuse ((Kortman, 1999, Breedveld, 2007 Forsberga