Get help from the best in academic writing.

Biotechnology Advantages and Disadvantages

Generally, biotechnology is the manipulation of living organisms and organic materials that help to meet our basic needs. According to International Unions of Pure and Applied Chemistry (1981) biotechnology is the application of biochemistry, biology, and microbiology, chemical engineering to industrial processes, products and on the environment (Bull et al, 1982). As define by European Federation of Biotechnology, biotechnology is the application of biochemistry, microbiology and engineering sciences in order to achieve technological application of the capabilities of microorganisms and cultured tissue cells. Thus, biotechnology may have different definitions but it only has one objective which is helps to provide our basic needs by production and improvement of health, shelter, clothing, food and environment.
According to Bartoszek et al (2006), biotechnology can be divided into three main parts which is green biotechnology, red biotechnology and white biotechnology. Green biotechnology is in agricultural field which include plant tissue culture, plant engineering culture and plant molecular marker assisted breeding. The biotechnologist use technology to improve the production of crop which economically important. For red biotechnology, they are including in health care processes where the scientists and biotechnologists are doing their work to find the solution or vaccine to disease or influenza. They are also responsible in gene therapy, improvement in diagnosis and testing genetic. In white biotechnology, there are industrial and environmental processes. Biotechnologists under this type usually use molds, yeast, bacteria and enzymes to produce services and products.
The development of biotechnology can be divided into three stages (Verma et al, 2011). The stages are ancient, classical and modern biotechnology. Biotechnology has developed throughout the time in order to satisfy and fulfill human needs. Its developments were based on observations where the observations are then applied to practical scenario. The developments of biotechnology also influenced by evolution of new technologies with time, where the advance technologies are improved as various principles of life-science were understand better (Verma et al, 2011).
As defined by Verma et al (2011), ancient biotechnology is the period where biotechnologies were developing before the year of 1800 which can be termed as ‘discoveries’. The developments of biotechnologies during this period do not use any kind of technologies. The human beings at this time only use their observations of nature to do the process in order to improved their way of life and fulfill their basic needs. For example, Sumerians have found the way to brewed beer in 1750 BC. Furthermore, the Chinese have used moldy soybean curds as antibiotic to treat boils in 500 BC and Greeks have practiced crop rotation to maximize soil fertility in 250 BC.
The developments of classical biotechnology are started from year 1800 to the middle of twentieth century. During this period, the biotechnologies were developing with scientific evidence (Verma et al, 2011). Biotechnologists start to examine and review the processes in order to solve the puzzle of biotechnologies. Each of the findings by the scientists or biotechnologists has created the path for new and next discoveries. For example, Gregor John Mendel who is known as ‘Father of Modern Genetics’ have study the transfer of genetic information by using pea plants. He has proposed that invisible internal units of information account for observable traits. The ‘invisible internal units of information’ later known as gene as more discoveries were done by scientists.
The last stage is modern biotechnology which starts after the end of World War II. Many discoveries have been founded as almost all basic tools and technologies were available for the scientist to undergo their research. Their important scientific discoveries also aided by the basic concepts which have been elucidated by the earlier scientist (Verma et al, 2011). One of the examples of major findings during this period is the discoveries of DNA as genetic materials by Watson and Crick. Later, Jacob and Monad has proposed the ‘Concept of Operon’ in 1961 and followed by Kohler and Milestein in 1975 with the concept of cytoplasmic hybridization (Verma et al, 2011). All the previous discoveries have been used as references and continued for new discoveries until nowadays.
Biotechnology has the power to give humans good health, sustain the environment and also the well-being farm and consumer communities. Biotechnology is an evolving and dynamic industry. This industry is playing important roles in economics, health and environment. The applications of biotechnology have both positive impacts and negative impacts to the human civilization.
Moreover, they have some kinds of plantation that also can give the positive effect to the product which is plants with their own built-in pest resistance traits and the pesticide applied to the field is very little so that it has low the effect of pesticide on the product. Rapid, sensitive, and accurate diagnostic kits are used to monitor the agricultural pests. The farmers can use the accurate method to reduce the use of pesticide and can improve the timing for the application. Farmers also can use consistent, reliable and highly purified enzymes for the food processing. For example, Chymosin which is a product of biotechnology is used in cheese production industry to replace the more expensive and variable enzyme which is Rennin that obtained from animal source.

Industrial biotechnology application have also led to some clear processes that can produce less waste and less energy and water is used in some industrial sectors such as chemical, pulp, textiles, paper, minerals and also metal industries. This application can help to save water and energy to be used in future. It is believed that industrial biotechnology can give more impacts to the world (Zeweldu, 2006).
Environmental biotechnology is a system of science and engineering that is related to the use of microorganisms and their products to prevent, to treat, and to monitor the environmental pollution through bio treatment, bioremediation of polluted environments and bio monitoring of environmental and treatment processes. The biotechnology agents used in environmental biotechnology are bacteria, fungi, algae and protozoa. Bacteria are the most active organism that is used in the biodegradation of organic matter. Fungi can assimilate the organic substances. Fungi are used to treat solid waste such as composting and soil bioremediation. Algae are used to remove the organic matter and nutrients from water that exposed to the light. Protozoa can digest organic food and it play an important role in treatment of industrial hazardous, solid, liquid and gas wastes. The main application of biotechnology is the biodegradation of organic matter and biodegradation of hazardous substances in industrial wastewater (Ivanov and Hung, 2010).
Secondly, biotechnology also produces eco-friendly product. These types of product give many benefits to civilians, and also to the environment. First and foremost, eco-friendly product reduces damages the environment. This mean, the production of such products will not be harmful to the environment and also to the human being. For instance, the products that are manufactured from the biodegradable materials will not give any negative impacts or cause poisonous waste. Besides that, the products that are produced from biotechnology is free of toxic and it provides a safe environment. The eco-friendly products are usually expensive because the production will cost high. For example, the bio fuel is more expensive than the normal fuel.

Biotechnology and the research regarding the biotechnology become an issue where the people will either support the biotechnology research or against the research. Technologies are advance nowadays and many researches are being done to cure some diseases and cloning of animals and also produce transgenic plants (Blazinprho, 2002). Although, the researches gives good impact to human and also the environments but the side effects with the nature have been revealed.
The development in biotechnology during the last few decades has raised a lot of ethical controversy. Critics have generated different arguments while opposing this technology, which may conveniently be divided into two kinds which are intrinsic arguments and extrinsic arguments (Kaiser, 2005). Intrinsic arguments against biotechnology maintains that biotechnology is “objectionable in itself” (Comstock, 2000) while extrinsic arguments focuses on the “allegedly harmful consequences of making GMOs” (Comstock, 2000). In this sense, animal biotechnology is ethically problematic because “it is unnatural to genetically engineer plants, animals and foods” (Comstock, 2002). The argument goes like this; biotechnology is the form of ‘redesigning an animal’ which is the “Playing with God”. Animal biotechnologies are also break down the natural species boundaries. In the sense of extrinsic argument, animal biotechnology is ethically wrong because of its negative consequences on human beings, animals, and environment.
The argument of Playing with God is based upon the concept of ‘God’s will’ and on the relationship among God, nature, animals, and human beings. To some extent, this argument is the adherent version of Christianity (Kaiser, 2005). Coady (2009) uses the term in a religious sense. He thinks that the view that God himself sets out a plan and makes designs for the universe and human beings is being assigned to observe it. God as an omnipotent and omniscient being has set out a specific ‘roadmap’ for the universe, animal kingdom, and nature (Coady, 2009). But, animal biotechnology tempers the animals’ design by inserting a new gene into a species. Thus, in a way (animal) biotechnology breaks down the boundary between the ‘realm of God’ and the ‘realm of humans’.
Is the playing with God argument enough to oppose animal biotechnology? We got responses to such a question in Ronald Dworkin’s book in which he argues that in the bio political context ‘the argument for Playing with God’ is not ‘morally and intellectually honest’. This is not a recent phenomenon to sustain the fight against the hostile nature. Human beings, for their necessity and needs, rearrange nature in the way they find it suitable for them. Biotechnology is such a technology that has essentially become a part of human life. Therefore, the argument for the Playing with God is not a strong stand to stop biotechnology.

Recently, a conceptual study, “Ethical Aspects of Agricultural Biotechnology” (BABAS, 1999) has shown that any sort of biotechnology is morally unacceptable because of its ‘unnaturalness’ (AEBC, 2002). The European Commission agrees with the idea that (animal) biotechnology is ‘unnatural’. This theory also indicates that the application of biotechnology breaks the natural order of different kinds of species. Something natural is assumed to be valuable and good. But, all kinds of biotechnology or genetic technology temper nature where species boundaries are crossed. The term, ‘Natural’, is somehow different from the concept ‘Unnatural’.
There are also negative impacts due to genetic engineering. This is because the genetic engineering uses viral vector to carry the functional genes into a human body. The consequences of the viral genes on the human body are not known. The functional genes might replace the other genes besides the mutated gene. This can also cause different form of disease to human. This also may lead to extinction of human beings. Therefore the genetic engineering is considered to have disadvantages to human (Uppanggala, 2010).
Besides, loss of biodiversity is one of the dangers caused by genetic engineering. Even the introduction of genetically modified organisms (GMO) would not consider increasing the loss of diversity that is caused by humans around the world. The farmers always selected the most superior, productive and resistance varieties of crops, thereby lessening the diversity of plants that are being cultivated. Deforestation and pollution of biodiversity regions like the rain forest and mixed dipterocarp forest are the biggest part of biodiversity harm. Engineered crops enable the use of powerful herbicides, pesticides and fungicides that are the important issues that we should concerned about. It is the major problem for biodiversity and also the major selling point of some engineered crop varieties. Some genetic modifications have been made on cotton varieties, making them resistant to effective herbicides. These cotton plants are demanded since they reduce the cost and increase the efficiency of the herbicide. But the herbicides that can kill every single plant is giving impact to the ecological perspectives. It is caused worried to see from the ecological side.
Genetic material from viruses is used in the production of transgenic crops for genetic engineering process. There are chances that these genes may combine with gene from infecting viruses and resulting viruses can be more infectious. It can cause more serious disease. For example Cauliflower Mosaic Virus (CaMV) has the potential to reactivate the dormant viruses. It also can create new viruses in all species to which the virus is transferred. This can cause to the cancer development. There are some recent studies shows that, genetically modified (GM) foods that have been infected with CaMV can cause stomach and colon cancer to human beings that eating the genetically modified food.

Biotechnology has both positive and negative impacts on human civilization. It should be applied in a proper method in order to get positive impact.
BABAS., (1999). Ethical Aspects of Agricultural Biotechnology, Bioethical Aspects of Biotechnology in the Agro Food Sector, Cambridge Biomedical Consultants, The Hague.
Bartoszek, A., Bekierska, A., Bell-lloch, J., Groot, T.

Benefits of Fungi: An Overview

Fungi play a critical role in our ecosystem and host systems more than many realize. Fungi are a large group of eukaryotic organisms that encompass different characteristics that allow them to have multi faceted roles in our society. Fungi aid in benefitting the ecosystem by decomposing dead matter creating a recyclable source of nutrients. Many plants have a symbiotic relationship with fungi allowing both organisms to survive in various environmental changes. Certain fungi like yeast can be recombined and inserted into plant genomes to allow expression of certain proteins that prevent loss of crops. Within the human systems fungi aid in maintaining normal flora and they are used in antibiotic and viral drug therapies. Fungi are commonly known to be pathogenic; however, they are present everywhere in our environment and have many beneficial effects on hosts like providing nutrients to organisms, working with plants to increase absorption, providing antibiotics and antiviral medications for humans, they aid in biotechnology by mass producing a hybrid organism, and they provide a source of food and nutrients to animals.
Whether people realize it or not, many things they do when handling food is related to preventing growth of fungi. A common fungal growth is bread mold or Rhizopus stolonifer that invades bread and spreads quickly. People are cautious of moldy bread because of the irritation it has on the GI tract. On the other hand, there are fungi that can cause severe symptoms like sepsis, consolidations in the lungs that causes pneumonia, nephritis, mengititis and endocarditis (San-Blas). These symptoms will not only hospitalize patients, but there is a chance that they can die from these infections if it is not detected early enough. Parasitic fungi exist, but they are a small group of fungi.
Many fungi have a mutualistic, symbiotic or saprophytic relationship with their host. Saprophytic fungi specifically are mostly chemohetrotrophs that endocytose dead organic matter and break down matter by release proteases that breakdown protein into amino acids, lipases that break down fatty acids into glycerol, and amylases that break down starch into simple sugars (Clegg). There are external factors that contribute to how fast the dead organic matter is digested like soil pH, temperature, ion, Oxygen, and water levels. Breaking down organic matter is important because nutrients become recycled and reused by other organisms (Whitman). Even when the fungal hyphae die the nutrients can be taken up by plants directly. This specifically helps hosts like plants, bacteria and other microorganisms so that they can take up monomers easily.
Mycorrhizae is a type of fungi that is known for its symbiotic relationship with certain plants. Some plants can be more susceptible of Mycorrhizae invasion based on its niche, environment and competitor for resources. This rhizomorphs efficiently transfer water and ions to the plant roots during environmental stresses (Klironomos). Many plants digest inorganic nitrogen, which is not readily available; however, the rhizomorphs can fix organic nitrogen for the plant allowing biochemical reactions to occur swiftly. This benefits the plant by increasing the amount of nutrients during a drought or unbalanced osmotic level. The fungus increases the surface area benefitting the plant and in return the plant provides the fungus with carbon products created from photosynthesis (Whitman).
Fungus like yeast has another application that benefits hosts. Recently the applications of recombinant plasmids have been applied to organisms to express a gene of interest. For instance, yeasts were genetically transformed to produce vaccines for hepatitis B. They are also used to produce insulin, which is a drug that helps diabetic patient’s decrease their blood sugar levels. Proinsulin is a gene that is inserted into the yeast plasmid to form a hybrid plasmid and the yeast will express the proinsulin gene that is modified by the body into functional insulin (Krasner). The yeast provides the body with the ability to regulate the sugar levels, which helps humans and other mammals with diabetes. Yeast is a great model to use in biotechnology because it is easy to grow, inexpensive and there is extensive research done on them. Yeast benefits humans by producing genetically altered drug therapies and studying them has provided insight into complex organism systems.
The medical application of fungi is the ability to produce antibiotics from fungal metabolites. In order to survive in the ecosystem fungi produce chemicals that prevent bacteria from invading them, which acts as a form of self defense. Penicillium notatum is the fungi that derive the Penicillium antibiotic, which became popular during World War II for saving the lives of many soldiers by killing foreign parasitic microbes (Mailer). Another benefit is the fruiting body of the fungus can be edible. Many people incorporate mushrooms into their diet because of the richness of Potassium, vitamins, and low sodium and fat levels. Overall, the benefits of fungi outweigh the harmful effects because of the many roles they play with different organisms.
The benefits of fungi outweigh those of bacteria and viruses for humans. Bacteria are heavily used in biotechnology to express a gene of interest similar to yeast. However, the bacteria community becomes more vigorous due to over prescribed antibiotics that kill the weak bacteria and the resistant bacteria remain. The resistant bacteria will grow exponentially and horizontally gene transfer can occur with other bacteria that can make them more pathogenic. Humans don’t have a ‘cure’ for viruses. There are gene therapies that are available, but there is difficulty forming drugs to fight viruses because they invade human cells. There are certain targeted therapies, but they have an effect on human systems too that create ill side effects. Also, viruses have the ability to become cancerous because of the potential to over proliferate, which disrupts tissue organization.
In conclusion, fungi are a group of organism that exists and help other organism by increasing nutrient absorption, providing a nutrient full meal, used in the formation of antibiotics, antivirals and involved in gene therapy. Fungi affect many different hosts like plants, mammals and the environment. There are fungi that negatively invade their hosts, but the benefits outweigh the negative. They form mutualistic and symbiotic relationships with plants to help increase surface area for absorption of nutrients. This helps plants survive even in tough terrain and poor weather conditions. Overall, people are unaware of how important fungi play a role in our ecosystem. Many times we become aware only when there are adverse symptoms or effects, but they are vital organisms. They are present everywhere and help humans and other organisms more than we expect.